BRASSINOSTEROID INSENSITIVE2 negatively regulates cellulose synthesis in Arabidopsis by phosphorylating cellulose synthase 1.

نویسندگان

  • Clara Sánchez-Rodríguez
  • KassaDee Ketelaar
  • Rene Schneider
  • Jose A Villalobos
  • Chris R Somerville
  • Staffan Persson
  • Ian S Wallace
چکیده

The deposition of cellulose is a defining aspect of plant growth and development, but regulation of this process is poorly understood. Here, we demonstrate that the protein kinase BRASSINOSTEROID INSENSITIVE2 (BIN2), a key negative regulator of brassinosteroid (BR) signaling, can phosphorylate Arabidopsis cellulose synthase A1 (CESA1), a subunit of the primary cell wall cellulose synthase complex, and thereby negatively regulate cellulose biosynthesis. Accordingly, point mutations of the BIN2-mediated CESA1 phosphorylation site abolished BIN2-dependent regulation of cellulose synthase activity. Hence, we have uncovered a mechanism for how BR signaling can modulate cellulose synthesis in plants.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The cellulose synthase companion proteins act non-redundantly with CELLULOSE SYNTHASE INTERACTING1/POM2 and CELLULOSE SYNTHASE 6

Cellulose is a cell wall constituent that is essential for plant growth and development, and an important raw material for a range of industrial applications. Cellulose is synthesized at the plasma membrane by massive cellulose synthase (CesA) complexes that track along cortical microtubules in elongating cells of Arabidopsis through the activity of the protein CELLULOSE SYNTHASE INTERACTING1 (...

متن کامل

Pausing of Golgi bodies on microtubules regulates secretion of cellulose synthase complexes in Arabidopsis.

Plant growth and organ formation depend on the oriented deposition of load-bearing cellulose microfibrils in the cell wall. Cellulose is synthesized by plasma membrane-bound complexes containing cellulose synthase proteins (CESAs). Here, we establish a role for the cytoskeleton in intracellular trafficking of cellulose synthase complexes (CSCs) through the in vivo study of the green fluorescent...

متن کامل

Catalytic subunit stoichiometry within the cellulose synthase complex.

Cellulose synthesis is driven by large plasma membrane-inserted protein complexes, which in plants have 6-fold symmetry. In Arabidopsis (Arabidopsis thaliana), functional cellulose synthesis complexes (CSCs) are composed of at least three different cellulose synthase catalytic subunits (CESAs), but the actual ratio of the CESA isoforms within the CSCs remains unresolved. In this work, the stoic...

متن کامل

Cellulose synthase interacting protein: a new factor in cellulose synthesis.

Cellulose is the most abundant biopolymer on earth. The great abundance of cellulose places it at the forefront as a primary source of biomass for renewable biofuels. However, the knowledge of how plant cells make cellulose remains very rudimentary. Cellulose microfibrils are synthesized at the plasma membrane by hexameric protein complexes, also known as cellulose synthase complexes. The only ...

متن کامل

A Gibberellin-Mediated DELLA-NAC Signaling Cascade Regulates Cellulose Synthesis in Rice.

Cellulose, which can be converted into numerous industrial products, has important impacts on the global economy. It has long been known that cellulose synthesis in plants is tightly regulated by various phytohormones. However, the underlying mechanism of cellulose synthesis regulation remains elusive. Here, we show that in rice (Oryza sativa), gibberellin (GA) signals promote cellulose synthes...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Proceedings of the National Academy of Sciences of the United States of America

دوره 114 13  شماره 

صفحات  -

تاریخ انتشار 2017